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Abstract: Bifurcation theory provides powerful tools for the analysis of the dynamics of open-
loop or closed-loop nonlinear control systems. These systems are Filippov (or piecewise smooth)
when the dynamics depends discontinuously on the state, for example as a consequence relay
feedback actions. In this paper we contribute to the analysis of codimension-two bifurcations in
Filippov systems by reporting some results on the equilibrium bifurcations of 2D systems that
involve a sliding limit cycle. There are only two such local bifurcations: a degenerate boundary
focus that we call homoclinic boundary focus; and the boundary Hopf. We address both of them,
and provide the complete set of curves that exist around such codimension-two bifurcation
points. Existing numerical software can be used to exploit these results for the analysis of the
stability boundaries of nonlinear piecewise smooth control systems. In the final part of this
paper, we discuss a 2D Filippov system modelling an ecosystem subject to on-off harvesting
control that exhibits both codimension-two bifurcations.

Keywords: Nonlinear system, Nonlinear control, Piecewise smooth, Sliding, Stability domains,
Relay control, Ecology.

1. INTRODUCTION

With the help of many publicly available numerical pack-
ages (e.g., Doedel et al. (2007); Dhooge et al. (2002);
Kuznetsov and Levitin (1997)) the boundaries of stability
of the asymptotic solutions of a nonlinear control sys-
tem can be reconstructed as the parameters are changed,
and the solutions can be followed as their stability and
topological structure change with the system’s parameters
(Kuznetsov, 2004; Krener et al., 2004; Astolfi and Mar-
coni, 2008). This proves an especially valuable tool when
dealing with multistable systems, where the coexistence of
multiple attractors renders the analysis by simulation inef-
fective. It represents also, quite often, a uniquely effective
way to prove the existence of periodic and quasiperiodic so-
lutions, by detecting their onset, for example, at Hopf and
torus (Neimak-Sacker) bifurcations. Finally, knowledge of
the dynamic transitions of solutions through bifurcations is
being exploited to accomplish control-based continuation
of solutions beyond their domains of stability, both in
virtual and in experimental setups (Sieber et al., 2008,
2009), providing ways to test the dynamic behaviour of
nonlinear structures beyond their breaking point.

In all these applications, though the algebraic conditions
for the detection of a bifurcation are a necessary ingredi-

ent, useful results are obtained only with the knowledge of
the dynamics expected near the bifurcating solution. The
description of all invariant sets (equilibria, cycles, etc.)
that must exist near a bifurcating solution is known, in
the mathematical jargon, as the bifurcation’s unfolding.

In the study of a system’s bifurcation diagram, a special
role is played by codimension-two bifurcations, which ap-
pear in a two-parameter diagram as points of intersec-
tion of several bifurcation curves. Their unfolding must
describe not only the dynamics nearby, but also all the
bifurcation curves (called codimension-one bifurcations)
that are rooted at such points. Knowledge of these unfold-
ings thus provides a simple way to deduce the presence
of a number of bifurcation curves, once a codimension-
two point has been detected. A classic example is the
famous Bogdanov-Takens bifurcation (see, e.g., Kuznetsov
(2004)), where the presence of a codimension-two equilib-
rium with a double zero eigenvalue implies the existence of
a Hopf, a saddle node, and a homoclinic bifurcation curves.

In the case of smooth systems, both in discrete and
continuous time, the unfoldings of all the most common
codimension-one and -two bifurcations are well known. In
nonsmooth systems however, new bifurcations are found,
that involve the interaction of invariant sets with the
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system’s discontinuity boundaries. These are commonly
called discontinuity-induced bifurcations (di Bernardo
et al., 2008a). The theory of nonsmooth systems is at a
much more primitive stage than its smooth counterpart,
and though some progresses have been made in unfolding
codimension-one and -two discontinuity induced bifurca-
tions, an adequate understanding of these systems lies still
quite distant (Colombo et al., submitted). An interesting
exception is given by planar Filippov systems.

A Filippov (or piecewise smooth) system (Filippov, 1988)
is composed of different smooth ODEs defined in open
non-intersecting domains Si, separated by smooth discon-
tinuity boundaries. In the simplest case of two adjacent
parameter-dependent domains S1,2 ∈ R

n:

S1(α) = {x ∈ R
n : H(x, α) < 0},

S2(α) = {x ∈ R
n : H(x, α) > 0},

α ∈ R
m, separated by a smooth (n − 1)-dimensional

boundary Σ(α) = {x ∈ R
n : H(x, α) = 0}, where H

is a smooth scalar function with nonvanishing gradient
Hx(x, α) on Σ, a Filippov system is defined as

ẋ =

{

f (1)(x, α), x ∈ S1(α),

f (2)(x, α), x ∈ S2(α).
(1)

Here f (1,2) are smooth parameter-dependent vector fields,
and the dot stands for time-derivative w.r.t. time.

Orbits cross Σ at points where the components of f (1,2)

orthogonal to Σ (i.e., those along Hx(x, α)) have the
same direction. Where these components have opposite
directions, the system admits a solution that slides on Σ
in accordance with the Filippov vector field:

ẋ = (1− λ)f (1)(x, α) + λf (2)(x, α), (2)

λ being selected so that ẋ is tangent to Σ. Sliding is
stable (and simply called sliding) when Σ is attracting
(f (1,2) push toward Σ) and unstable (called escaping) in
the opposite case.

The (n−2)-dimensional borders between the crossing and
sliding regions of Σ are generically composed of tangency
points, where one of the vector fields f (1,2) is tangent to Σ
(λ = 0, 1 in (2)). As shown in Fig. 1, a tangency point of
f (i) is called visible if the orbit of f (i) passing through the
point is locally defined in Si, it is called invisible otherwise.

Generic equilibria of (1) can be standard equilibria of
f (1,2) in S1,2 or equilibria of the Filippov vector field with

λ ∈ (0, 1), called pseudoequilibria, where f (1,2) are nonzero
and anticollinear. The stability of pseudoequilibria is de-
termined by the Filippov vector field together with the
stability of the sliding. Pseudoequilibria are reached in
finite time along a direction transverse to Σ. Standard
equilibria and pseudoequilibria of (1) are called admissible,
while equilibria of f (i) in Sj , i 6= j, and equilibria of (2) in
the crossing region (λ < 0 or λ > 1) are called virtual.

Fig. 1. Orbits in a region Si of the state space, with
tangency points marked by black dots. Left/Right:
a visible/invisible tangency point of the vector field.

The complete unfolding of most codimension-one disconti-
nuity induced bifurcations of planar Filippov systems has
been presented in Kuznetsov et al. (2003), together with
canonical one-parameter bifurcation diagrams, but a way
to generalize the results to arbitrary dimensions is still
unknown.

In this paper, we contribute to the analysis of codimension-
two bifurcations in discontinuous systems by studying
all equilibrium (local) bifurcations in 2D Filippov sys-
tems that involve codimension-one bifurcations of sliding
limit cycles. It follows from the visual inspection of all
codimension-one cases treated in Kuznetsov et al. (2003)
that such codimension-two bifurcations can only occur at
a degenerate boundary focus (BF, a focus equilibrium of
vector fields f (1) or f (2) colliding with the discontinuity
boundary). There are actually only two cases. In one
case the focus collides with a visible tangency point and
a pseudo-saddle and, at the same time, the infinitesi-
mal loop originated at the tangency point merges with
the stable manifold of the pseudo-saddle. As a result, a
small sliding homoclinic orbit to pseudo-saddle exists close
to the codimension-two bifurcation and the correspond-
ing codimension-one bifurcation curve emanates from the
codimension-two point in the universal local bifurcation
diagram. For this reason, we call this codimension-two
bifurcation homoclinic boundary focus (HBF). The second
degenerate boundary focus is the boundary Hopf (BH) at
which the focus collides with the discontinuity boundary
while being at the same time nonhyperbolic. The small-
amplitude limit cycle originating through the Hopf bi-
furcation grazes the discontinuity boundary close to the
codimension-two bifurcation, so that a codimension-one
grazing bifurcation curve emanates from the codimension-
two point at the BH bifurcation.

In what follows, we provide the unfoldings of these two
bifurcations, and briefly sketch the analytical steps to
obtain them. The complete analysis will be reported in
Dercole et al. (submitted). In both cases, starting from
a generic 2D Filippov system showing the bifurcation,
we derive a canonical form to which the system can
be reduced through explicit changes of variables and
parameters (and time reparametrization in the BH case),
locally to the codimension-two point in a two-parameter
space. The bifurcation analysis is then performed on the
canonical forms and provides explicit genericity conditions
expressed in the original variables and parameters. While
the unfolding of the HBF case is new and rather involved,
the BH case is easier and already addressed in di Bernardo
et al. (2008b) and Guardia et al. (2009). However, as
precisely discussed in Sect. 3, the system analysed in the
first reference is not fully generic, whereas the approach
followed in the second does not provide a means to
compute the genericity conditions numerically.

2. HOMOCLINIC BOUNDARY FOCUS

The first codimension-two bifurcation that we study—
HBF—occurs at the border between the two codimension-
one BF bifurcations named BF1 and BF2 in Fig. 2. We
consider a planar system defined as in (1), where f (1)

has a focus in x = 0, while α ∈ R
2, α = 0 being

the codimension-two point. Furthermore, we assume the
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Fig. 2. The unfoldings of the five BF bifurcations discussed
in Kuznetsov et al. (2003). T , tangency point; P ,
pseudoequilibrium; O, focus; L, sliding cycle. Bifur-
cations BF1, BF2, and BF5 are said to be nonsmooth
fold scenarios (di Bernardo et al., 2008a), since they
imply the collision and annihilation of an equilibrium
(O) and a pseudoequilibrium (P ), while bifurcations
BF3 and BF4 are called persistence scenarios, as a
stationary solution persists through the bifurcation.

following conditions:
(G.1) (f (1))0 = 0, H0 = 0, λ0

1,2 = µ0 ± iω0, µ0, ω0 > 0,

(G.2) H0
x(f

(2))0 6= 0,
(G.3) H0

α 6= 0,

(G.4) H0
x((f

(1)
x )0)−1(f (2))0 < 0,

(G.5) the system changes from BF1 to BF2 at α = 0,
where the 0-superscript stands for evaluation at (x, α) =

(0, 0), f
(1)
x is the gradient of f (1), and λ0

1,2 are the eigenval-

ues of (f
(1)
x )0. Conditions (G.1)–(G.4) require that x = 0

is an unstable focus (the stable case can be obtained by
reversing the direction of time and thus involves escaping
instead of sliding) and that no other degeneracy but (G.5)
occurs at α = 0. In particular, negativity of the left-hand
side of (G.4) ensures a nonsmooth fold BF scenario, as
defined in the caption of Fig. 2.

Under these conditions, through an invertible change of
coordinates and parameters (detailed in Dercole et al.
(submitted)) that leaves the focus in the origin, the system
can be put in the form

ż =

{

f(z, β), z2 < β1,

[0, −1]
⊤
, z2 > β1,

(3)

where the boundary Σ is horizontal, region S1 is below
the boundary, and the vector field in S2 is constant
and vertically points downward. The parameter β1 is the

distance of the equilibrium z = 0 from Σ, hence the BF
bifurcation curve has equation β1 = 0 (the β2-axis), with
the equilibrium z = 0 admissible for β1 > 0 and virtual
for β1 < 0. The parameter β2 can be chosen so that
it is positive in the scenario BF1, negative in BF2, and
equal to 0 at the codimension-two bifurcation (an explicit
test-function β2 = ϕ(α) to detect the codimension-two
point along the BF curve is described in Dercole et al.
(submitted), so that (G.5) becomes 〈ϕ0

α, (H
⊥

α )0〉 6= 0,
where H⊥

α = [Hα2
,−Hα1

] is tangent to the BF curve).

Inspecting the portraits in Fig. 2 it is easy to see that,
at the BF1–BF2 transition (see left panels), the orbit de-
parting from the tangency point reaches the discontinuity
boundary vertically, thus generating a sliding homoclinic
cycle (a homoclinic cycle to a pseudoequilibrium). This can
be proved rigorously by studying the asymptotic expansion
of this orbit. The linear expansion of the SH curve takes
the form

1
2 s20β1 + s11β2 = 0, (4)

where the coefficient s11 6= 0 provided (G.4) and (G.5) (see
Dercole et al. (submitted)). A trivial parameter change
makes the SH bifurcation locally correspond to the positive
β1-axis.

Close to β = 0 there are generically (i.e., under conditions
(G.1)–(G.5)) no other bifurcations. In fact, the equilibrium
z = 0 remains hyperbolic and the boundary-equilibrium
scenario (nonsmooth-fold) does not change for small ‖β‖.
Thus, there is a unique equilibrium (z = 0) and a unique
pseudoequilibrium (P ) involved in the HBF bifurcation,
and the only possible global bifurcation is the SH bifur-
cation that we have discussed. The bifurcation diagram
of the HBF singularity locally to β = 0 is hence that of
Fig. 3, where the positive/negative β2-axis is the BF1/BF2

BF branch, while the positive β1-axis correspond to the
SH bifurcation. The labelling of the corresponding state
portraits is in accordance with Fig. 2.

Fig. 3. HBF universal local bifurcation diagram. The BF
curves are in blue, the sliding homoclinic in red.
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3. BOUNDARY HOPF

The second codimension-two bifurcation that we consider—
BH—occurs when a focus on the discontinuity boundary Σ
has purely imaginary eigenvalues. Generically, this implies
that the focus undergoes a (Andronov-)Hopf bifurcation.

As in the previous section, α ∈ R
2, and α = 0 is the

codimension-two point. We assume the following condi-
tions:

(G.1) (f (1))0 = 0, H0 = 0, λ0
1,2 = ± iω0 6= 0,

(G.2) H0
x(f

(2))0 6= 0,
(G.3) H0

α 6= 0,

(G.4) H0
x((f

(1)
x )0)−1(f (2))0 6= 0,

where (G.2) and (G.3) are the same as in the previous
section. (G.1) ensures a BH bifurcation at α = 0, while
(G.4) prevents a change of BF scenario near α = 0. Close
to α = 0, x = 0 is an equilibrium of f (1). We write the
eigenvalues of f (1)(0, α) as λ1,2(α) = µ(α) ± iω(α), with
µ0 = 0 and ω0 > 0. We further assume the transversality
and genericity of the Hopf bifurcation, i.e.,

(G.5) µ0
α 6= 0 and l01 6= 0,

where l1 is the first Lyapunov coefficient of the Hopf
normal form (see, e.g., Kuznetsov (2004), Sect. 3.5). Fi-
nally, we assume that the BF and Hopf bifurcation curve
intersect transversely at α = 0 in the α-parameter plane:

(G.6) 〈(H⊥

α )0, µ0
α〉 6= 0.

Under these conditions, the vector field f (1) can be re-
duced to Hopf normal form (through smooth and in-
vertible changes of variables and parameters, and a time
reparametrization). The Filippov system then becomes

ẏ =







[

β2 −1
1 β2

]

y + l1(β)‖y‖
2y +O(‖y‖4), in S1,

v(β) +O(‖y‖), in S2,
(5)

where v(β) is the constant part of f (2), in the new variables
and parameters. The parameters β can be chosen so that
β2 = 0 is the Hopf curve, while β1 = 0 is the BF curve.

As mentioned in the Introduction, two simple Filippov
systems have already been proposed to unfold the BH
bifurcation (di Bernardo et al., 2008b; Guardia et al.,
2009). In di Bernardo et al. (2008b), however, condition
(G.4) is not satisfied, so that a generalized boundary equi-
librium bifurcation (the change between persistence and
nonsmooth-fold scenarios, see Della Rossa and Dercole
(submitted)) concomitantly occurs. Indeed a fold bifur-
cation curve between pseudoequilibria emanates from the
BH point tangentially to the BF curve (see Fig. 5 in
di Bernardo et al. (2008b)). By contrast, the system in
Guardia et al. (2009) is generic but cannot serve as a
canonical system (i.e., a generic 2D Filippov system cannot
be reduced to it by smooth coordinate transformations and
time-reparametrization), since the Hopf normal form is as-
sumed together with an horizontal discontinuity boundary.

Besides the BF and Hopf bifurcations, which intersect
orthogonally, there are generically no other local bifur-
cations. By contrast there are two candidate global bi-
furcations: the first is a SH bifurcation occurring when
the tangency point close to y = 0 is connected with the
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Fig. 4. BH universal local bifurcation diagrams.
Top/bottom: persistence/nonsmooth-fold scenario;
left/right: super-/sub-critical Hopf (tagged respec-
tively H− and H+).

pseudo-saddle colliding with y = 0 at the BF; the second
is the grazing (GR) of the limit cycle originating through
the Hopf bifurcation. A SH can however be excluded, as
the BF1–BF2 test-function introduced in section 2 does
not vanish at a generic BH singularity.

As for the GR bifurcation, the cycle exists for β2 ≷ 0 (and
is stable/unstable) if the Hopf is super-/sub-critical (l01 ≶ 0

in (G.5)) and is geometrically a circle of radius
√

−β2/l01+
O(β2) (where O(β2)-terms are smooth functions of β1).

Let σ(β) be the distance of the equilibrium y = 0 from
the boundary Σ, with positive/negative values if H(0, β)
is negative/positive, in order to make σ(β) differentiable
at β = 0. Thanks to (G.1) and (G.3), and to our choice of
β1, we can write σ as

σ(β) = σ0
β1
β1 +O(‖β‖2), (6)

where σ0
β1

can be shown to be generically nonzero. Then,

the asymptotic of the GR bifurcation curve (GR1/GR2 if
l01 ≶ 0 in (G.5)) is obtained by equating the radius of the
cycle with the distance σ and by eliminating nonleading
terms, i.e.,

√

−β2/l01 ≃ σ0
β1
β1. (7)
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The GR curve hence emanates from β = 0 tangentially
to the β1-axis (the Hopf curve) with positive β1 (the
equilibrium y = 0 is admissible) and positive −β2/l

0
1.

The bifurcation diagrams of the BH singularity locally to
β = 0 are reported in Fig. 4. Generically, there are four
cases, depending on whether the Hopf bifurcation is super-
or sub-critical (l01 ≶ 0 in (G.5), left/right panels in the
figure) and on the BF scenario, persistence or nonsmooth-
fold (positive/negative sign in (G.4), top/bottom; BF
scenarios are defined in the caption of Fig. 2).

4. EXAMPLE: ON-OFF HARVESTING CONTROL OF
A PREY-PREDATOR ECOSYSTEM

We have used the results presented above to analyse pos-
sible regulation strategies on a hunting reserve, modelled
as a di-trophic food chain with harvesting of the preda-
tor. The model is a variant of the classical Rosenzweig-
MacArthur prey-predator model. The densities of the prey
and of the predator are the variables x1 and x2, and
the predator population is harvested when abundant, i.e.,
when x2 > α−px1. Parameter α is a safety threshold, while
p models an additional decrease in the threshold when the
prey is abundant. An abundant prey guarantees a faster
predator recovery, so that harvesting is allowed at lower
predator densities.

The system’s equations where x2 < α− px1 (in S1) are

ẋ1 = x1(1− x1)−
ax1

b+ x1
x2, (8a)

ẋ2 =
ax1

b+ x1
x2 − dx2. (8b)

The prey grows logistically in the absence of predators and
the predation rate follows the Holling type-II functional
response—the Rosenzweig-MacArthur model—-see, e.g.,
Thieme (2003)). In S2, where x2 > α − px1, an extra
mortality term −Ex2 is added to (8b) due to harvesting.
Parameter E measures the harvesting effort and can be
controlled, e.g., by fixing the number of hunting licenses
being released. Similar models, with p = 0, are discussed
for example in Kuznetsov et al. (2003); Dercole et al.
(2003).

Overall, parameters α, E, and p are determined by the
harvesting policies and thus can be controlled by the legis-
lator, whereas a, b, and d depend on biological factors and
are typically not controllable. We have set the parameters
to the values p = 0.1, a = 0.3556, b = 0.15, d = 0.04444,
and studied the system in the plane (α,E), obtaining the
diagram in Fig. 5. The bifurcation diagram that we have
obtained (top-left panel) is rooted on two codimension-two
points, a BH with nonsmooth fold scenario, and a HBF. In
all the domain of the diagram there exist a large attracting
limit cycle that is not affected by the depicted bifurcations.
As show in the state portraits, the cycle lies partially below
the threshold. This is an undesirable behaviour, since it
implies that the prey becomes, periodically, dangerously
scarce, and hunting must be prohibited for extended peri-
ods of time (see Fig. 6). However, in the shaded region of
the bifurcation diagram in Fig. 5 there exist a second at-
tractor: it is either a stable focus (in the dark grey region),
or a stable limit cycle (in the light grey region). Both these
attractors lie on or above the harvesting threshold, where

Fig. 6. The “bad” stable limit cycle of system (8), simu-
lated at E = 0.21, α = 0.91. The black part of the
cycle lies above (or on) the harvesting threshold, the
grey one below.

hunting is allowed, and thus are acceptable regimes. Notice
that we have not detailed the physical meaning of the
sliding behaviour. Mathematically speaking, sliding means
that at each time the harvesting effort takes the value in
[0, E] that keeps the predator density at the harvesting
threshold. Although this fine tuning of the effort is often
hard to be implemented, it can be well approximated by
high-frequency switching between fully open (effort E) and
closed hunting (e.g., by allowing hunting only a few days
per week).

Quite surprisingly, the “good” attractors are present for
low values of α (i.e., less restrictive hunting regulation)
and high values of E (i.e., more licences)! This suggests
that a higher harvesting effort, which keeps the density
of predators low, contributes to containing the system’s
oscillations by preventing the predator from consuming
nearly all of its food source. The result is the creation
of an attractor with smaller amplitude oscillations (the
small cycle) or no oscillations at all (the stable focus). By
suitably steering the system’s orbits these attractors can
be selected. These results are in contrast with most of the
harvesting policies that can be imagined on an intuitive
ground. For example, if the harvesting threshold is fixed
by conservation ecologists and the system attains an equi-
librium above but close to the threshold (see panel 1© in
Fig. 5), then one might think of increasing the predator
density with a milder harvesting effort. By contrast, our
results show that this might induce the destabilization of
the equilibrium, leading to small oscillations, and even-
tually to the disappearance of the “good” attractor (see
transitions 1©– 4©).

To conclude, notice that the model above with p = 0,
studied in Kuznetsov et al. (2003); Dercole et al. (2003),
exhibits a degenerate BH bifurcation. This modifies the
bifurcation diagram in Fig. 5, and adds a pseudo saddle-
node curve that emerges from the BH point and is indeed
visible in the bifurcation diagrams found in the above cited
references.
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